HyspIRI Mission Concept

Bogdan Oaida, with contributions from Michael Mercury [JPL]

[bogdan.oaida@jpl.nasa.gov]

Jet Propulsion Laboratory California Institute of Technology

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

HyspIRI Mission Concept

Orbit Selection

- Key Orbit Design Considerations
 - Local time of observations
 - Sun-synchronous
 - 10:30 AM LTDN
 - Altitude
 - Low Earth Orbit
 - Repeating Ground track
 - Global coverage in a minimum number of days given the swathwidth of each instrument.
 - VSWIR: 19 days revisit at the equator
 - TIR: 5 day revisit at the equator (1 day + 1 night)
- 626 km altitude at equator suits the needs of both instruments

Orbit selection and operations concept meet science requirements with infrequent ground commanding or maintenance.

Operations Concept

- Systematic mapping vs. pointing capability
- Target map driven No need for uploading acquisition sequences
- High resolution mode and Low resolution mode
- Direct Broadcast capability
 - Uses Intelligent Payload Module
 - Applications-driven

Operational Requirement	VSWIR	TIR
10:30 am sun-sync orbit	✓	✓
626 km altitude at equator	\checkmark	✓
19 days revisit at the equator	\checkmark	
5 day revisit at the equator		✓
Day Observation	\checkmark	✓
Night Observation		✓
Pointing strategy to reduce sun glint	✓	
Surface reflectance in the solar reflected spectrum for elevation angles >20	\checkmark	
Avoid terrestrial hot spot	\checkmark	
Monthly Lunar View calibration	\checkmark	✓
Weekly Solar View Calibration	✓	
Blackbody View Calibration		✓
Deep Space View Calibration		✓

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

HyspIRI Global Coverage

TIR Coverage after 5 days

Due to the min 20 deg Sun elevation angle constraint on the VSWIR acquisition, the latitudes covered change with the seasons

VSWIR Coverage after 19 days

Aug 24-26, 2010

HyspIRI Science Workshop 2010 - Pasadena, Ca

Data Acquisition Scenario

- Systematic mapping vs. pointing capability
- Target map driven No need for uploading acquisition sequences
- Data acquisition driven by land and coastal aquatic (<50m depth) coverage
 - Impact by low resolution modes on data volume is relatively small
- Both instruments on 24/7, but VSWIR <u>not</u> acquiring data at 100% duty cycle
- Low-latency products available via Direct Broadcast system
 - Applications (not science) driven

inaging wood					
Instrument	Land	Coastal	Deep Ocean	Greenland	Antarctica
VSWIR	60 m	60 m	1 km	1 km	1 km
TIR	60 m	60 m	1 km	1 km	1 km

Imaging Mode

Target Map

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Flight System Concept

- Industry procured spacecraft bus
 - SA-200HP used as an example for the study to identify and cost needed modifications
- HyspIRI specific
 - Payload integrated on the top plate (TIR, VSWIR) and inside the S/C
 - Configuration chosen to minimize/eliminate thermal impacts on the payload radiators
 - Spacecraft Dry Mass (CBE): 520 kg
 - Launch Mass: 681 kg
 - JPL DP Margin: 31%
 - Required Power (CBE): 620W
 - Available Power: 965W, 7.2 m² array

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Key Bus Performance Range Summary

	Requirements	RSDO SA-200HP	HyspIRI SA-200HP	Modifications	
Orbit	626 km 10:30 LTDN	✓	\checkmark	-	
Mission duration	3 years, selective redundancy	4 years, selective redundancy	3 years, single string	Remove redundancy to reduce cost	
Thermal	Passive architecture	\checkmark	\checkmark	-	
Downlink	800 Mbps	80Mbps	800 Mbps	Dual-pol X-band	
Propellant	75 m/s 37 kg	131 m/s 67 kg tank	131 m/s 67 kg tank	-	
Onboard recorder	1 Tbit	134 Gbits	1Tbit	SEAKR SSP-R	
Payload mass	126kg	666 kg	666 kg	Support structure for Instuments	
Payload Power	885 W	650 W	965 W	Single wing configuration, add one panel	
Pointing Knowledge		0.5 arcsec (3σ)	<=0.5 arcsec (3σ)	Replaced one of two coarse	
Pointing Accuracy	See table below	16 arcsec (3σ)	<=16 arcsec (3σ)	Ball CT-602 star tracker with one fine Lockheed Martin AST-301 star tracker.	
Pointing Stability		0.1 arcsec/sec (3σ)	<=0.1 arcsec/sec (3 σ)		

Pointing	VSWIR Requirement	TIR Requirement	Rationale	Driver
Knowledge	< 48 μrad (3σ/axis)	< 48 μrad (3σ/axis)	<30m (3 σ) post-reconstruction orthorectification knowledge at 626km altitude	TIR
Accuracy	<4.5 mrad (3ơ/axis)	<4.5 mrad (3 o /axis)	VSWIR: Limits cross-track error to < 3 km on the surface	VSWIR
Stability	±0.1 mrad/sec (3σ)	±24.7 mrad/sec (3σ)	VSWIR: Limit smear to < 0.6 meters as one pixel crosses a spot on the surface in 8.8 msec TIR: Time for 6 pixels in TDI string to cross a point on the surface at nadir is 0.39 msec.	VSWIR

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Science Payload Accommodation and System Margins

Accommodations	VSWIR	TIR
Mass (CBE)	55 kg	60 kg
Volume	1.1 x 0.5 x 0.8 m	1.2 x 1.1 x 0.6 m
Power	41 W	103 W
FOV (crosstrack)	13.62 deg	50.7 deg
FOV (alongtrack)	95.9 microrad	95.9 microrad
Orientation	4 deg to starboard	nadir

	Required	Design	Margin (D-R)/D
Swath width VSWIR	141km	151 km	6%
Swath width TIR	536km	600 km	11%
Recorder capacity	0.8 Tb	1.0 Tb	20%
Power	620 W (CBE)	965 W	36%
LV mass capability	520 (CBE, dry)	790 kg	34%

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Launch Vehicle Concept

1.50m

1.40m

1.80m

Ground System Concept

- Data Downlink
 - KSAT Ground network
 - Svalbard @ 800 Mbps Dual-pole X-Band (existing)
 - Poker Flats @ 800 Mbps Dual-pole X-Band (in development)
 - Other stations available
 - Almost 100% data return with 1 Tbit SSR on spacecraft
- Data Processing
 - SDS sized to process L0 through
 L2 data for both instruments
 - Deliver L2 data products to DAAC
 - L3 data products produced by users

HyspIRI will utilize existing infrastructure with proven capability to downlink and process all science data

BACKUP

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

HyspIRI Science Workshop 2010 - Pasadena, Ca

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Low Latency Data – Direct Broadcast

- Direct Broadcast Capability
- Low latency data (<6hrs)
- Applications Driven, Targeted Science
 - Non-stop data acquisition
 - Decision making capability
- Not tech development
- Design taken from NPP's high rate data (HRD) broadcast system
- Baseline design
 - 20 Mbps X-band
 - An Earth-coverage dish estimated at 0.5 m diameter
 - Reflector is shaped to provide peak gain at ~60 degrees off boresight
- Any user should be able to receive data when S/C is above 5 degrees

The DB capability will make use of high heritage technology and existing algorithms to enable the development of low latency data products and applications.

Key Driving SDS Design Requirements

Data Downlink Volumes:

5.3 Tb/day Max. (4.6 Tb/day Mean)

Data Product Types:

- 2 Level O's, 2 Level 1's, 2 Level 2's, tbd L3
- Data Product Availability:

Product Application	Nominal Latency From Receipt of Required L0a Data at Processing Node	Comments
Routine Science	1 week – 2 weeks	Products meet science/calibration specifications
Priority Target Events	1 day	Data acquisitions are not routinely planned but event-driven Products are L1 and L2/3 in limited quantity Products may not meet science/calibration specifications
Intelligent Payload Module Direct Broadcast	No latency requirement for SDS	Data broadcast via the IPM will not end up at the SDS

- **Total Mission Data Volume*:** 47.2 Tbits (6.2 Tb L0B's, 18.6 Tb L1B's, 22.5 Tb L2's) per day 58.2 Pb over mission life
- Processing Loading:

Sized to meet respective product latency requirements (no backlog and with margin to include *one* reprocessing campaign

SDS sized for 5.2 Tb/day

98.1% of the time, less than 5.2 Tb is downlinked per day

Notes: * Mission data volume based on maximum L0A downlink volume; exclusive of data from Direct Broadcast; Assumes all L0 processed to L1 & L2; all in 16-bit per sample; Assumes data compression ratios of 3:1 for all VSWIR and 2:1 for all TIR image bands; assumes no compression for ancillary bands; Tb – Terabits (10^12 bits); Pb – Petabits (10^15 bits)